Model Accuracy and Runtime Tradeoff in Distributed Deep Learning
نویسندگان
چکیده
Deep learning with a large number of parameters requires distributed training, where model accuracy and runtime are two important factors to be considered. However, there has been no systematic study of the tradeoff between these two factors during the model training process. This paper presents Rudra, a parameter server based distributed computing framework tuned for training large-scale deep neural networks. Using variants of the asynchronous stochastic gradient descent algorithm we study the impact of synchronization protocol, stale gradient updates, minibatch size, learning rates, and number of learners on runtime performance and model accuracy. We introduce a new learning rate modulation strategy to counter the effect of stale gradients and propose a new synchronization protocol that can effectively bound the staleness in gradients, improve runtime performance and achieve good model accuracy. Our empirical investigation reveals a principled approach for distributed training of neural networks: the mini-batch size per learner should be reduced as more learners are added to the system to preserve the model accuracy. We validate this approach using commonly-used image classification benchmarks: CIFAR10 and ImageNet.
منابع مشابه
Staleness-Aware Async-SGD for Distributed Deep Learning
This paper investigates the effect of stale (delayed) gradient updates within the context of asynchronous stochastic gradient descent (Async-SGD) optimization for distributed training of deep neural networks. We demonstrate that our implementation of Async-SGD on a HPC cluster can achieve a tight bound on the gradient staleness while providing near-linear speedup. We propose a variant of the SG...
متن کاملRuntime Neural Pruning
In this paper, we propose a Runtime Neural Pruning (RNP) framework which prunes the deep neural network dynamically at the runtime. Unlike existing neural pruning methods which produce a fixed pruned model for deployment, our method preserves the full ability of the original network and conducts pruning according to the input image and current feature maps adaptively. The pruning is performed i...
متن کاملImproving Stock Return Forecasting by Deep Learning Algorithm
Improving return forecasting is very important for both investors and researchers in financial markets. In this study we try to aim this object by two new methods. First, instead of using traditional variable, gold prices have been used as predictor and compare the results with Goyal's variables. Second, unlike previous researches new machine learning algorithm called Deep learning (DP) has bee...
متن کاملClassification of Chest Radiology Images in Order to Identify Patients with COVID-19 Using Deep Learning Techniques
Background and Aim: Due to the important role of radiological images for identifying patients with COVID-19, creating a model based on deep learning methods was the main objective of this study. Materials and Methods: 15,153 available chest images of normal, COVID-19, and pneumonia individuals which were in the Kaggle data repository was used as dataset of this research. Data preprocessing inc...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1509.04210 شماره
صفحات -
تاریخ انتشار 2015